Perturbations of Lane–Emden and Hamilton–Jacobi equations II: Exterior domains
نویسندگان
چکیده
منابع مشابه
On Maxwell's equations in exterior domains
In this paper the long time asymptotic behavior of solutions of Maxwell's equations with electric conductivity in an exterior domain with mixed boundary conditions is investigated. It is shown that the solution behaves asymptotically like a free space solution provided it obeys a suitable local decay-property. As a consequence the completeness of the wave-operators is obtained under very genera...
متن کاملGeneralized Maxwell Equations in Exterior Domains II: Radiation Problems and Low Frequency Behavior
We discuss the radiation problem of total reflection for a time-harmonic generalized Maxwell system in an exterior domain Ω ⊂ RN , N ≥ 3 , with nonsmooth inhomogeneous, anisotropic coefficients converging near infinity with a rate r−τ , τ > 1 , towards the identity. By means of the limiting absorption principle we prove for real frequencies that a Fredholm alternative holds true, that eigensolu...
متن کاملDecay Estimates for Variable Coefficient Wave Equations in Exterior Domains
In this article we consider variable coefficient, time dependent wave equations in exterior domains R × (R \ Ω), n ≥ 3. We prove localized energy estimates if Ω is star-shaped, and global in time Strichartz estimates if Ω is strictly convex.
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولResearch Article Eigenvalue Problems and Bifurcation of Nonhomogeneous Semilinear Elliptic Equations in Exterior Strip Domains
We consider the following eigenvalue problems: −Δu+ u = λ( f (u) + h(x)) in Ω, u > 0 in Ω, u ∈H1 0 (Ω), where λ > 0, N =m+ n ≥ 2, n ≥ 1, 0 ∈ ω ⊆ Rm is a smooth bounded domain, S = ω×Rn, D is a smooth bounded domain in RN such that D ⊂⊂ S, Ω = S\ –– D. Under some suitable conditions on f and h, we show that there exists a positive constant λ∗ such that the above-mentioned problems have at least ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2016
ISSN: 0022-0396
DOI: 10.1016/j.jde.2016.02.012